3 years ago by in Featured, Geometry, Geometry

2A quasiperiodic crystal, or, put succinctly, quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classicalcrystallographic restriction theorem, can possess only two, three, four, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders, for instance five-fold.

Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the fields of crystallography. Quasicrystals had been investigated and observed earlier, but, until the 1980s, they were disregarded in favor of the prevailing views about the atomic structure of matter. In 2009, after a dedicated search, a mineralogical finding, icosahedrite, offered evidence for the existence of natural quasicrystals.

Roughly, an ordering is non-periodic if it lacks translational symmetry, which means that a shifted copy will never match exactly with its original. The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two dimensions. The ability to diffract comes from the existence of an indefinitely large number of elements with a regular spacing, a property loosely described as long-range order. Experimentally, the aperiodicity is revealed in the unusual symmetry of the diffraction pattern, that is, symmetry of orders other than two, three, four, or six. In 1982 materials scientist Dan Shechtman observed that certain Aluminium-Manganese alloys produced the unusual diffractograms which today are seen as revelatory of quasicrystal structures. Due to fear of the scientific community’s reaction, it took him two years to publish the results for which he was awarded the Nobel Prize in Chemistry in 2011.

Mathematical Description

There are several ways to mathematically define quasicrystalline patterns. One definition, the “cut and project” construction, is based on the work of Harald Bohr.[28] Bohr showed that quasiperiodic functions arise as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with one or more hyperplanes), and discussed their Fourier point spectrum. In order that the quasicrystal itself be aperiodic, this slice must avoid any lattice plane of the higher-dimensional lattice. De Bruijn showed that Penrose tilings can be viewed as two-dimensional slices of five-dimensional hypercubic structures.[29] Equivalently, the Fourier transform of such a quasicrystal is nonzero only at a dense set of points spanned by integer multiples of a finite set of basis vectors (the projections of the primitive reciprocal lattice vectors of the higher-dimensional lattice).[30] The intuitive considerations obtained from simple model aperiodic tilings are formally expressed in the concepts of Meyer and Delone sets. The mathematical counterpart of physical diffraction is the Fourier transform and the qualitative description of a diffraction picture as ‘clear cut’ or ‘sharp’ means that singularities are present in the Fourierspectrum. There are different methods to construct model quasicrystals. These are the same methods that produce aperiodic tilings with the additional constraint for the diffractive property. Thus, for a substitution tiling the eigenvalues of the substitution matrix should be Pisot numbers. The aperiodic structures obtained by the cut-and-project method are made diffractive by choosing a suitable orientation for the construction; this is a geometric approach that has also a great appeal for physicists.

Classical theory of crystals reduces crystals to point lattices where each point is the center of mass of one of the identical units of the crystal. The structure of crystals can be analyzed by defining an associated group. Quasicrystals, on the other hand, are composed of more than one type of unit, so, instead of lattices, quasilattices must be used. Instead of groups, groupoids, the mathematical generalization of groups in category theory, is the appropriate tool for studying quasicrystals.

Using mathematics for construction and analysis of quasicrystal structures is a difficult task for most experimentalists. Computer modeling, based on the existing theories of quasicrystals, however, greatly facilitated this task. Advanced programs have been developed allowing one to construct, visualize and analyze quasicrystal structures and their diffraction patterns.

Interacting spins were also analyzed in quasicrystals: AKLT Model and 8 vertex model were solved in quasicrystals analytically.

The author didnt add any Information to his profile yet

  • Published: 145 posts