Spiral of Theodorus

3 years ago by in Arithmetic, Arithmetic, Featured, Geometry, Geometry

In geometry, the spiral of Theodorus (also called square root spiralEinstein spiral or Pythagorean spiral) is a spiral composed ofcontiguous right triangles. It was first constructed by Theodorus of Cyrene.

Construction

The spiral is started with an isosceles right triangle, with each leg having unit length. Another right triangle is formed, an automedian right triangle with one leg being the hypotenuse of the prior triangle (with length √2) and the other leg having length of 1; the length of the hypotenuse of this second triangle is √3. The process then repeats; the ith triangle in the sequence is a right triangle with side lengths √i and 1, and with hypotenuse √(i + 1).

History

Although all of Theodorus’ work has been lost, Plato put Theodorus into his dialogue Theaetetus, which tells of his work. It is assumed that Theodorus had proved that all of the square roots of non-square integers from 3 to 17 are irrational by means of the Spiral of Theodorus.

Plato does not attribute the irrationality of the square root of 2 to Theodorus, because it was well known before him. Theodorus and Theaetetus split the rational numbers and irrational numbers into different categories.

Hypotenuse

Each of the triangles’ hypotenuses hi gives the square root of the corresponding natural number, with h1 = √2.

Plato, tutored by Theodorus, questioned why Theodorus stopped at √17. The reason is commonly believed to be that the √17 hypotenuse belongs to the last triangle that does not overlap the figure.

Overlapping

In 1958, Erich Teuffel proved that no two hypotenuses will ever coincide, regardless of how far the spiral is continued. Also, if the sides of unit length are extended into a line, they will never pass through any of the other vertices of the total figure.

 Extension

Theodorus stopped his spiral at the triangle with a hypotenuse of √17. If the spiral is continued to infinitely many triangles, many more interesting characteristics are found.

Growth rate
Angle

If φn is the angle of the nth triangle (or spiral segment), then:

\tan\left(\varphi_n\right)=\frac{1}{\sqrt{n}}.

Therefore, the growth of the angle φn of the next triangle n is:

\varphi_n=\arctan\left(\frac{1}{\sqrt{n}}\right).

The sum of the angles of the first k triangles is called the total angle φ(k) for the kth triangle, and it equals:

\varphi\left (k\right)=\sum_{n=1}^k\varphi_n=2\sqrt{k}+c_2(k)

with

\lim_{k \to \infty} c_2(k)=- 2.157782996659\ldots.
Radius

The growth of the radius of the spiral at a certain triangle n is

\Delta r=\sqrt{n+1}-\sqrt{n}.
Archimedean spiral

The Spiral of Theodorus approximates the Archimedean spiral. Just as the distance between two windings of the Archimedean spiral equals mathematical constantpi, as the number of spins of the spiral of Theodorus approaches infinity, the distance between two consecutive windings quickly approaches π.

The following is a table showing the distance of two windings of the spiral approaching pi:

Winding No.: Calculated average winding-distance Accuracy of average winding-distance in comparison to π
2 3.1592037 99.44255%
3 3.1443455 99.91245%
4 3.14428 99.91453%
5 3.142395 99.97447%
→ ∞ → π → 100%

As shown, after only the fifth winding, the distance is a 99.97% accurate approximation to π.

The author didnt add any Information to his profile yet

  • Published: 145 posts